Enumerating log rational curves on $\mathbb{P}_{\mathbb{P}^r}(\mathscr{O}^s \oplus \mathscr{O}(-a))$

Naufil Sakran, joint work with Carl Lian

Question

Let X be a smooth, projective variety. Let (C, p_1, \ldots, p_n) be a general pointed curve of genus g. Let $\beta \in H_2(X, \mathbb{Z})$ be an effective curve class on X, and let $q_1, \ldots, q_n \in X$ be general points.

Question: How many morphisms $f: C \to X$ are there in class β (i.e. $f_*([C]) = \beta$) satisfying $f(p_i) = q_i$ for all $i \in [n] = \{1, ..., n\}$?

Geometric Tevelev Degrees

Let X be a smooth projective variety over \mathbb{C} of dimension r, and let $\beta \in H_2(X, \mathbb{Z})$ be a non-zero effective curve class. Fix $g, n \geq 0$ such that 2g-2+n>0 so that the moduli space of stable maps $\overline{\mathcal{M}}_{g,n}(X,\beta)$ is a Deligne-Mumford stack. Let $\mathcal{M}_{g,n}(X,\beta)$ be the open subscheme of smooth maps, and consider the forgetful map

$$\tau: \mathcal{M}_{g,n}(X,\beta) \to \mathcal{M}_{g,n} \times X^{n}.$$

$$(f: (C, \{p_{i}\}_{i \in [n]}) \to X) \mapsto (C, \{p_{i}\}) \times \{f(p_{i})\}_{i \in [n]}$$

Assume that the expected dimension of $\mathcal{M}_{g,n}(X,\beta)$ is equal to the dimension of $\mathcal{M}_{g,n} \times X^n$ or equivalently,

$$\beta \cdot K_{X}^{\vee} = \dim(X)(n+g-1),$$

and all the dominating components of $\mathcal{M}_{g,n}(X,\beta)$ are generically smooth of the expected dimension. Then the **geometric**Tevelev degree $\text{Tev}_{g,\beta,n}^X$ of X is defined as the degree of the forgetful map τ .

Example: [1] For the case when

$$X = \mathbb{P}^1$$
, $\beta = (g+1)[\mathbb{P}^1]$, and $n = g+3$

we have

$$\text{Tev}_{g,(g+1)[\mathbb{P}^1],g+3}^X = 2^g.$$

This result also follows from early work on Vafa-Intriligator formulas [2].

Logarithmic Tevelev Degrees with tangency conditions

Let X/\mathbb{C} be a smooth, projective toric variety, and let $D_o \subset X$ be the torus-invariant divisors, indexed by the maximal rays $\rho \in \sum$ (1) in the fan \sum of X. The **boundary** of X is given by $\bigcup_{\rho \in \sum(1)} D_\rho$ and its complement is the **interior** X° of X.

Let $\beta \in H_2(X, \mathbb{Z})$ be an effective curve class, and let $n \geq 3$. Assume that

$$\int_X \beta \cdot D_\rho \ge 0, \quad \text{for all } \rho \in \sum (1).$$

For each ρ , let $\mu_{\rho} = (\mu_{\rho,\nu})_{\nu=1}^{m_{\rho}} \in \mathbb{N}^{m_{\rho}}$ be a vector of positive integers, with sum $\int_{X} \beta \cdot D_{\rho}$. In the case when $\int_{X} \beta \cdot D_{\rho} = 0$, we let μ_{ρ} be the empty vector and $m_{\rho} = 0$. We write $m = \sum_{\rho \in \sum(1)} m_{\rho}$. Consider n + m distinct points

$$(P,Q) = \left(\{p_i\}_{i=1}^n, \{q_{\rho,\nu\rho\in\sum(1)}\}_{\nu=1}^{m_\rho} \right) \in (\mathbb{P}^1)^{n+m}.$$

Let $\mathcal{M}_{\Gamma}(X)$ denote the moduli space of log maps $f:(\mathbb{P}^1, P, Q) \to X$ such that

- $\bullet f_*[C] = \beta,$
- f maps p_i to X° and f maps $q_{\mu,\nu}$ to the toric boundary of X with multiplicity $\mu_{\rho,\nu}$, i.e.

$$f^*D_{\rho} = \sum_{\nu=1}^{m_{\rho}} \mu_{\rho,\nu} q_{\rho,\nu}.$$

We use Γ to denote the data of β , the integer n, and the vectors μ_{ρ} specifying the tangency profile of f along the boundary.

Assume that $n = \frac{m}{\dim X} + 1$, then we define the (genus 0) **logarithmic Tevelev degree** $\log \text{Tev}_{\Gamma}^{X}$ to be the degree of the forgetful morphism

$$\tau: \mathcal{M}_{\Gamma}(X) \to \mathcal{M}_{0,n} \times X^{n}$$
.

Main Result [3] [C. Lian, S.]

Fix integers $r, s \ge 1$ and $a \ge 0$. Consider the space $X_{r,s,a} = \mathbb{P}_{\mathbb{P}^r}(\mathcal{O}^s \oplus \mathcal{O}(-a))$ and let Γ denote the tangency data for maps to $X_{r,s,a}$. Assume that $n = \frac{m}{r+s} + 1 \ge 3$ is an integer, where $m = \sum_{j=0}^{r+s+1} m_j$ is the total number of distinct intersection points of a rational curve \mathbb{P}^1 with the toric boundary, as prescribed by Γ . Here D_1, \ldots, D_{r+1} are the pullbacks of the torus-invariant divisors on \mathbb{P}^r , D_0 is the divisor corresponding to the factor $\mathcal{O}(-a)$, and $D_{r+2}, \ldots, D_{r+s+1}$ are the remaining torus-invariant divisors. Fix general points $p_1, \ldots, p_n \in \mathbb{P}^1$ and $x_1, \ldots, x_n \in X^\circ$. If

$$m_j \le n-1 \ \forall j=1,\ldots,r+s+1,$$

$$\sum_{j=r+2}^{r+s+1} m_j \ge (s-1)(n-1), \qquad m_0 + \sum_{j=r+2}^{r+s+1} m_j \le s(n-1)$$

hold, then

$$\log \text{Tev}_{\Gamma}^{X_{r,s,\alpha}} = \left(\prod_{j=0}^{r+s+1} m_j! \right) \left(\prod_{j=0}^{r+s+1} \prod_{\nu=1}^{m_j} \mu_{j,\nu} \right) a^{\sum_{j=0}^{r+1} m_j - r(n-1) - m_0} \left(\sum_{j=0}^{r+1} m_j - r(n-1) \right).$$

Otherwise, $\log \text{Tev}_{\Gamma}^{X_{r,s,\alpha}} = 0$. When a = 0, the expression 0^0 is interpreted to equal 1.

Enumerativity of $X = Bl_{q_1,...,q_r}(\mathbb{P}^r)$

We showed that, for the case $X = \mathsf{Bl}_{q_1,\ldots,q_r}(\mathbb{P}^r)$, the prediction of [4] for the logarithmic Tevelev degree does not always hold.

Example: Let $X = Bl_{[0:1:0],[0:0:1]}(\mathbb{P}^2)$. Any map $f: \mathbb{P}^1 \to X$ is given by five sections g_1, \ldots, g_5 organized as $f = [g_1g_2g_3: g_1g_4: g_2g_5]$.

• We proved that $\log \text{Tev}_{\Gamma}^{X} = 2400 \text{ when}$ $\mu_{1} = \mu_{2} = (1), \ \mu_{3} = (1, 1, 1, 1), \ \mu_{4} = \mu_{5} = (5),$

contradicting the prediction by [4] i.e. 5400.

• We have $logTev_{\Gamma}^{X} = 1152$, as predicted by [4]

$$\mu_1 = \mu_2 = (1), \ \mu_3 = (1, 1, 1), \ \mu_4 = (4), \ \mu_5 = (2, 2).$$

Future Directions

The natural next direction would be to compute $log Tev_{\Gamma}^{X}$ for curves with genus g > 0.

References

- [1] Jenia Tevelev.

 Scattering amplitudes of stable curves.

 arXiv preprint arXiv:2007.03831, 2020.
- [2] Aaron Bertram, Georgios Daskalopoulos, and Richard Wentworth.

Gromov invariants for holomorphic maps from riemann surfaces to grassmannians.

Journal of the American Mathematical Society, 9(2):529-571, 1996.

[3] Carl Lian and Naufil Sakran.

Enumerating log rational curves on some toric varieties.

arXiv preprint arXiv:2506.13975, 2025.

[4] Alessio Cela and Aitor Iribar López.

Genus O logarithmic and tropical fixed-domain counts for hirzebruch surfaces.

Journal of the London Mathematical Society, 109(4):e12892, 2024.

Contact Information

• Email: nsakran@tulane.edu